Synthesis and reactivity of $(\mu - \sigma, \pi$ -acetylide) $(\mu$ -alkaneand μ -arene-thiolate)bis(tricarbonyliron) complexes *

Dietmar Seyferth^{*}, Jeffrey B. Hoke and David R. Wheeler

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (U.S.A.) (Received July 7th, 1987)

Abstract

The reaction of $[Et_3NH][(\mu-CO)(\mu-RS)Fe_2(CO)_6]$ with bromoacetylenes, $R^1C=CBr$, gives complexes of type $(\mu-\sigma,\pi-C=CR^1)(\mu-RS)Fe_2(CO)_6$ in good yield. Reactions of such complexes with Et_2NH , $PhNH_2$, t-BuNH₂ and Ph_3P involve attack of these nucleophiles at a carbon atom of the C=C bond of the $R^1C=C$ ligand.

Introduction

As reported in an earlier communication [1], the easily synthesized salts of the $[(\mu-CO)(\mu-RS)Fe_2(CO)_6]^-$ anion react with allylic and propargylic halides. The products obtained no longer contain the bridging CO ligand and have instead the new organic group as a σ, π -bridging ligand. Presumably, the first step involves $S_N 2'$ attack of the $[(\mu-CO)(\mu-RS)Fe_2(CO)_6]^-$ anion at the carbon-carbon multiple bond of the organic halide with displacement of halide ion, followed by displacement of CO by the unsaturated ligand now σ -bonded to iron.

We have extended these studies to include reactions of $[(\mu-CO)(\mu-RS)Fe_2(CO)_6]^$ anions with bromoacetylenes. The expected products would be complexes with σ,π -bridging acetylide ligands and such complexes should show interesting reactivity.

Results and discussion

Reaction of 1-bromoalkynes, $R^1C \equiv CBr$ ($R^1 = Ph$, 'Bu, SiMe₃), with [Et₃NH][(μ -CO)(μ -RS)Fe₂(CO)₆] (1) ($R = {}^{t}Bu$, Et, Ph), generated the expected acetylide-bridged

^{*} Dedicated to Professor Colin Eaborn in recognition of his many contributions to Group IV organometallic chemistry on the occasion of his 65th birthday.

diiron complexes, $(\mu$ - σ , π -C=CR¹)(μ -RS)Fe₂(CO)₆ (**2**) in high yield (eq. 1). Addition of the acetylene to a brown-red THF solution of the thiolate anion typically resulted in rapid reaction with brisk gas evolution (CO), dramatic color change (cherry-red), and formation of a white precipitate ([Et₃NH][Br]). After chromatographic workup, the acetylide products were isolated as a mixture of two inseparable isomers (identified in the respective ¹H and ¹³C NMR spectra). Presumably, these isomers

arise from either an axial (ax) or equatorial (eq) orientation of the organic substituent and the lone electron pair on the bridging sulfur atom with respect to the Fe₂S plane (3,4). In general, the ¹H NMR spectra of these complexes show thiolate resonances of the major isomer shifted slightly downfield from those of the minor isomer. For instance, the major t-butyl resonance in complex 2a appears at $\delta(H)$ 1.38 while the minor resonance appears at $\delta(H)$ 1.21. Prior correlations have shown that protons on axial thiolate ligands resonate at higher field than the corresponding equatorial protons [2]. Consequently, the high-field signals in our system can be attributed to the axial (minor) isomer and the low-field signals to the equatorial (major) isomer. The fact that the major isomer formed is that with the equatorial orientation seems reasonable based on steric arguments. In related work,

Carty has reported the synthesis of analogous phosphido-bridged μ - σ , π -acetylide complexes by the reaction of diiron nonacarbonyl with phosphinoacetylenes (eq. 2) [3]. Other mono- and polynuclear acetylide species also are known [3d,e,4-11].

In line with proposed mechanisms for nucleophilic substitution of α -bromoacetylenes [12], the initial step in our system possibly results from attack of an iron-centered anion on the bromine atom of the acetylene (Scheme 1). Bridging of the terminal alkynyl moiety of the resulting heptacarbonyl intermediate with elimination of CO then produces 2.

In the infrared spectra, only **2c** shows a band assignable to the carbon-carbon stretch of the triple bond ($\nu(C\equiv C)$ 1910 cm⁻¹). The appearance of this band is consistent with coordination of the alkynyl fragment resulting in a decrease of the stretching frequency from that of a free carbon-carbon triple bond (ca. 2100-2250 cm⁻¹) [13]. Similarly, Carty has observed this effect in the related phosphido-bridged complexes, $(\mu - \sigma, \pi - C \equiv CPh)(\mu - Ph_2P)Fc_2(CO)_6$ (**5a**) and $(\mu - \sigma, \pi - C \equiv CPh)(\mu$

Ph₂P)Fe₂(CO)₅PPh₃ (6). where ν (C=C) was observed at 1930 and 1900 cm⁻¹, respectively [3b]. The corresponding absorption in the other thiolate-bridged, μ - σ , π -acetylide complexes which we have prepared (**2a.b.d**-f) were not located due to overlap with the terminal carbonyl bands. Only the strongly electron-withdrawing trimethylsilyl group [14] in **2c** shifted ν (C=C) far enough to lower frequency to be observed distinctly.

Although the alkynyl bond typically is not observable in 2 via IR spectroscopy, the acetylenic carbon atoms themselves are easily assigned in the corresponding 13 C NMR spectra (Table 1). In all cases except 2c (where $R^1 = Me_sSi$), the acetvlide carbon atoms (C_{α} and C_{β}) resonate in the range $\delta(C)$ 95–120. As expected, Carty has noted similar behavior in the series of related acetylides $(\mu \cdot \sigma, \pi \cdot C \equiv CR)(\mu \cdot \sigma)$ Ph_2P)Fe₂(CO)₆ (5). However, whereas we cannot assign C_{α} and C_{β} unambiguously. Carty could differentiate between C_{α} and C_{β} based on differences in coupling constants to the bridged phosphorus atom. In addition, he noted that the relative position of C_{α} and C_{β} , and hence the charge distribution of the triple bond. depended on the group bonded to C_{β} . When R was t-butyl (charge donating). C_{α} was observed at higher field ($\delta(C)$ 98.4) than C_{β} ($\delta(C)$ 107.0). However, when R was phenyl (charge withdrawing), C_{α} was observed at lower field ($\delta(C)$ 110.4) than C_{β} ($\delta(C)$ 92.1). Whether this substituent derived reversal in polarization occurs in our acetylide system cannot be determined with certainty, although direct comparison to Carty's correlations seems reasonable. It is interesting to note that for 2c $(\mathbf{R} = \mathbf{Me}_3\mathbf{Si})$, C_a and C_B are separated by approximately 50 ppm, indicating a much larger degree of polarization than for the other acetylide complexes. This likely results from the strongly electron withdrawing nature of the trimethylsilyl group [14].

Structurally, complexes 2 are interesting in that the bridging acetylide ligand is fluxional. This is illustrated in the variable temperature ¹³C NMR study (μ - σ , π -C=CSiMe₃)(μ -¹BuS)Fe₂(CO)₆ (2c) (Fig. 1). At room temperature, the ¹³C NMR spectrum shows two signals in the terminal carbonyl region (δ (C) 208.12, minor isomer; δ (C) 209.48, major isomer) each of which can be assigned to all the carbonyl ligands of each isomer. However, 2c is a statically unsymmetrical molecule. The two tricarbonyliron fragments in each isomer are chemically inequivalent, and.

Table 1

¹³C NMR data for 2

Compound	R	R^1	$\delta(C_{\alpha/\beta})$
2a	^t Bu	Ph	92.39, 95.43, 114.46, 114.95
2b	^t Bu	[†] Bu	102.34, 109.60
2c	^t Bu	SiMe ₃	90.95, 95.27, 141.32, 143.24
2d	Eι	Ph	93.09, 93.87, 113.21, 119.00
2e	Et	^t Bu	101.50, 105.48, 107.72
21	Ph	ⁱ Bu	100.85, 104.75, 108.26, 111.01

Fig. 1. Variable temperature ¹³C NMR study for 2c.

therefore, should give rise to two carbonyl resonances (a total of four including both isomers) assuming that the three carbonyl ligands on each metal center are locally equilibrated between themselves by rapid rotation. Consequently, some type of fluxional motion involving the bridging acetylide ligand must occur at room temperature which equilibrates the two tricarbonyliron fragments, and hence, all carbonyl ligands in each isomer on the NMR time scale. As illustrated in Fig. 1, the two inequivalent tricarbonyliron fragments of each isomer can be equilibrated by a flipping motion of the acetylide ligand over the face of the Fe₂S core. Not surprisingly, this motion can be frozen out at low temperature. As the temperature is lowered, the two singlets broaden, and then, at -30 °C, each is split into two distinct resonances ($\delta(C)$ 207.47 and 209.23, minor isomer; $\delta(C)$ 208.23 and 208.60, major isomer) corresponding to the now inequivalent $Fe(CO)_3$ fragments of each isomer. A broad hump has also begun to form to the left of these four peaks indicative of the slowing down of the localized carbonyl rotations on each iron center. Further cooling causes further slowing until at -50 °C, nine distinct CO peaks are visible in the range $\delta(C)$ 207.42–210.29. As expected, this fluxionality is reversible. Subsequent warming of the sample to room temperature results in the reappearance of the original two carbonyl signals. This type of fluxional process has been proposed for other bridged vinyl and acetylide complexes as well [15].

Because of the polarizable and relatively unhindered nature of their bridging acetylide ligands, complexes 2 appeared to be likely candicates for further reactivity studies. Carty has extensively explored the chemistry of the corresponding phosphido-bridged acetylide derivatives $(\mu - \sigma, \pi - C \equiv CR)(\mu - Ph_2 P)Fe_2(CO)_6$ (5). Included in these studies were the reactions of 5 with amines, phosphines, and phosphites. Depending on the particular amine or phosphine/phosphite utilized, new phosphido-bridged iron complexes were isolated resulting from nucleophilic attack on the triple bond with subsequent incorporation of the base into a new bridging ligand (eqs. 3–7) [3b,16]. Based on this precedent, it was of interest to see if $(\mu - \sigma, \pi - C \equiv CR^1)(\mu - RS)Fe_2(CO)_6$ (2) would react similarly.

In general, reaction of $(\mu - \sigma, \pi - C \equiv CPh)(\mu^{-1}BuS)Fe_2(CO)_6$ (2a) with amines was not as successful when compared to Carty's results. For many amines (e.g., bis(trimethylsilyl)amine, diphenylamine, methylamine, n-propylamine, dimethylamine, and diisopropylamine), reaction led to decomposition. However, diethylamine, aniline, and t-butylamine did react to yield isolable products analogous to those of type 9, 10 and 11, respectively. In the case of diethylamine, the one-carbon bridged, zwitterionic, imminium complex $(\mu$ -HCC(Ph)=NEt₂) $(\mu^{-t}BuS)Fe_2(CO)_6$ (13) was isolated in 71% yield (eq. 8). In the reaction of aniline, the iminoethyl bridged complex, $(\mu$ -CH₂C(Ph)=NPh) $(\mu^{-t}BuS)Fe_2(CO)_6$ (14) was isolated in 80% yield (eq. 9). Finally, in the case of t-butylamine, the α,β -unsaturated acyl complex, $(\mu^{-t}BuNH(Ph)C=CHC=O)(\mu$ -SBu^t)Fe₂(CO)₆ (15) was isolated in 37% yield (eq. 10).

Surprisingly, however, the corresponding reactions of diethylamine with $(\mu - \sigma, \pi - C \equiv C^{t}Bu)(\mu^{-t}BuS)Fe_{2}(CO)_{6}$ (2b) or $(\mu - \sigma, \pi - C \equiv CSiMe_{3})(\mu^{-t}BuS)Fe_{2}(CO)_{6}$ (2c) only led to decomposition. Similarly, Carty has noted that nucleophilic addition of amines to $(\mu - \sigma, \pi - C \equiv C^{t}Bu)(\mu - Ph_{2}P)Fe_{2}(CO)_{6}$ (5b) did not occur [3e].

Products 13, 14 and 15 all gave elemental carbon/hydrogen combustion analyses, infrared, mass, and ¹H and ¹³C NMR spectra consistent with the structures given. Furthermore, these data were consistent with the limited spectroscopic evidence presented by Carty for the related phosphido-bridged complexes, 9, 10, and 11 (eqs. 4–6), whose structures were determined primarily by X-ray crystallography [16]. Furthermore, the spectroscopic data for the vinylacyl derivative, 15, were in agreement with known α , β -unsaturated diiron acyl species [17]. Finally, as illustrated in

their ¹H and ¹³C NMR spectra, 13 and 15 both were isolated as a mixture of two inseparable isomers presumably resulting from either an axial (ax) or equatorial (eq) orientation of the organic thiolate group.

Mechanistically, formation of 13, 14 and 15 results from initial nucleophilic attack of the amine on the β -carbon atom of the acetylide ligand of 2a. Surprisingly, this is not consistent with the assumed polarization of the triple bond. Based on the ¹³C NMR correlations drawn by Carty and presented earlier in this discussion, the α -carbon atom of $(\mu$ - σ , π -C=CPh)(μ -Ph₂P)Fe₂(CO)₆ (5a) was found to be more "electrophilic" than the β -carbon atom [3e]. Thus, nucleophilic attack should be directed at the α -carbon atom of the acetylide ligand. In fact, Carty typically did not observe this tendency (eqs. 3–6), and we did not observe this orientation in the reactions of $(\mu$ - σ , π -C=CPh)(μ -⁴BuS)Fe₂(CO)₆ as well. Nevertheless, β -addition of the amine to the acetylide ligand of 2a followed by 1,3-hydrogen migration generated 13 in the case of diethylamine. In the case of t-butylamine, migration plus insertion of both amine protons produced the iminoethyl complex 14.

In contrast to these findings, reaction of triphenylphosphine with $(\mu - \sigma, \pi - C \equiv CPh)(\mu^{-1}BuS)Fe_2(CO)_6$ (2a) generated the phosphonium, ylide-carbene complex, $(\mu - Ph_3PC = CPh)(\mu^{-t}BuS)Fe_2(CO)_6$ (16) resulting from α -attack of the nucleophile (eq. 11). Based on the precedent established by Carty (eq. 7) [36,16e], characterization of 16 by the standard analytical and spectroscopic techniques was straightfor-

ward. However, the isolation of 16 was complicated by its facile conversion to the substituted triphenylphosphine complex $(\mu - \sigma, \pi - C \equiv CPh)(\mu^{-t}BuS)Fe_2(CO)_5(PPh_3)$ (17). In fact, 16 decarbonylates to 17 in 88% yield at room temperature after stirring for 60 h in THF (eq. 12). Based on the crystal structure of $(\mu - \sigma, \pi - C \equiv CPh)(\mu - Ph_2P)Fe_2(CO)_5(PPh_3)$ reported by Carty and coworkers [3b], we suggest that phosphine substitution occurs at the iron atom bound to the α -carbon atom of the acetylide ligand.

Experimental

General comments

All reactions were carried out under an atmosphere of prepurified tank nitrogen. Tetrahydrofuran (THF) was distilled under nitrogen from sodium/benzophenone ketyl and purged with nitrogen prior to use. Triethylamine, diethylamine, aniline, and t-butylamine were distilled under nitrogen from calcium hydride and purged with nitrogen prior to use. Triphenylphosphine was purchased from Aldrich and used as received. Ethyl, t-butyl, and phenyl mercaptans were purged with nitrogen and used without further purification. Phenylbromoacetylene (PhC=CBr), trimethyl-silylbromoacetylene (Me₃SiC=CBr), and t-butylbromoacetylene ($^{1}BuC=CBr$) all were prepared by a literature procedure [18] and purged with nitrogen prior to use. Triiron dodecacarbonyl (Fe₃(CO)₁₂) [19] was also prepared by a literature method.

The progress of all reactions was monitored by thin layer chromatography (Baker Flex – Silica Gel 1B-F). Purification by filtration chromatography in which the reaction products were dissolved in a suitable solvent and chromatographed on a bed of EM Science or Sigma 100–300 mesh silicic acid (ca. 200 ml) in a 350 ml glass fritted filter funnel was used in most cases. Further purification by medium pressure column chromatography was accomplished with a 300×25 mm column using Sigma 230–400 mesh silica gel. All chromatography was completed without exclusion of atmospheric moisture or oxygen. Solid products were recrystallized from deoxygenated solvents at -20° C.

Solution infrared spectra (NaCl windows) were obtained using a Perkin–Elmer Model 1430 double beam grating infrared spectrophotometer. Proton NMR spectra were recorded on either a JEOL FX-90Q, a Bruker WM-250, or a Varian XL-300 NMR spectrometer operating at 90, 250, or 300 MHz respectively. Carbon-13 NMR spectra were obtained using a Bruker WH-270 NMR spectrometer operating at 67.9 MHz, phosphorus-31 NMR spectra using a JEOL FX-90Q spectrometer operating at 36.2 MHz. Electron impact mass spectra were obtained using a Finnigan-3200 mass spectrometer operating at 70 eV. Field desorption mass spectra were obtained using a Finnigan MAT-731 mass spectrometer operating in the positive ion mode. Masses were correlated using the following isotopes: ¹H, ¹²C, ¹⁴N, ¹⁶O, ²⁸Si, ³¹P, ³²S, ⁵⁶Fe. Melting points were determined in air on a Büchi melting point apparatus using analytically pure samples and are uncorrected. Microanalyses were perfomed by Scandinavian Microanalytical Laboratory, Herlev, Denmark.

Standard in-situ preparation of $[Et_3NH][(\mu-CO)(\mu-RS)Fe_2(CO)_6]$

A 250 ml Schlenk flask equipped with a stir-bar and a rubber septum was charged with 1.52 g (3.02 mmol) of triiron dodecacarbonyl and degassed by three evacuation/nitrogen-backfill cycles. The flask was then charged sequentially with 30

ml of THF, 0.42 ml (3.00 mmol) of triethylamine, and 3.00 mmol of the appropriate thiol. The resulting mixture then was stirred for 20 min at room temperature during which time slow gas evolution and a gradual color change to brown-red were observed. The $[Et_3NH][(\mu-CO)(\mu-RS)Fe_2(CO)_6]$ reagent solution subsequently was used in-situ without further purification.

Synthesis of $(\mu - \sigma, \pi - C \equiv CPh)(\mu - BuS)Fe_2(CO)_6$

To the standard [Et₃NH][(μ -CO)(μ -¹BuS)Fe₂(CO)₆] reagent solution (3.00 mmol) was added 0.37 ml (3.00 mmol) of phenylbromoacetylene by syringe at room temperature. An immediate reaction ensued with brisk gas evolution (CO), a gradual color change to cherry red. and formation of a white precipitate ([Et₃NH][Br]). After the reaction mixture had been stirred for 2 h at room temperature, the solvent was removed in vacuo, and the resulting cherry red tar was purified by filtration chromatography. Pentane eluted a minor pale orange band which was not collected. Further elution with pentane yielded a dark red band which gave 1.25 g (2.65 mmol, 88%) of (μ - σ , π -C=CPh)(μ -⁴BuS)Fe₂(CO)₆ (**2a**) (a mixture of two inseparable isomers), as a slightly air-sensitive red oil.

Anal. Found: C, 46.15: H, 3.14. C₁₈H₁₄Fe₂O₆S calc: C, 45.99: H, 3.00%. IR: Terminal carbonyl region (pentane): 2080s. 2042vs, 2018sh, 2009sh, 2002vs, 1980vw cm^{-1} . ¹H NMR (acetone- d_6 ; 90 MHz): δ 1.21 (s, 9H, SC(CH₃)₃ minor isomer), 1.38 (s. 9H, SC(CH₃)₃ major isomer), 7.17–7.80 (br m. 10H, C_6H_5 both isomers). Ratio major/minor = 1.3/1.0. ¹³C NMR (CDCl₃; 67.9 MHz): 8 33.33 (q. J. 127.8 Hz, SC(CH₃)₃ major isomer), 34.55 (q, J 128.1 Hz, SC(CH₃)₃ minor isomer), 47.94 (s. $SC(CH_3)_3$ minor isomer), 48.59 (s. $SC(CH_3)_3$ major isomer). 92.39 (s. acetylide C. minor isomer), 95.43 (s. acetylide C, major isomer). 114.46 (s. acetylide C, major isomer), 114.95 (s, acetylide C, minor isomer), 125.24 (s, upso-C₆H₅), 127.93 (d, J 157.0 Hz, C₆H₅), 128.55 (d. J 160.6 Hz, C₆H₅). 131.80 (d. J 156.9 Hz, C₆H₅). 132.00 (d, J 160.5 Hz, C, H₅), 207.90 (s, Fe-CO minor isomer), 209.24 (s, Fe-CO major isomer). Mass spectrum (EI); m/z (relative intensity): 470 (M^{-} , 15), 442 $(M^+ - \text{CO}, 12), 414 (M^+ - 2\text{CO}, 38), 386 (M^+ - 3\text{CO}, 14), 358 (M^+ - 4\text{CO}, 41).$ 330 (M^+ – 5CO, 40), 302 (M^+ – 6CO, 84), 246 (HSFe₅C≡CPh, 100). 202 (HCSFeC≡CPh, 10), 190 (HSFeC≡CPh, 7), 189 (SFeC≡CPh, 16), 178 (HSFeCPh, 57), 169 (HSFeC≡C, 12), 157 (FeC≡CPh, 3), 145 (HSFe₂, 6), 144 (SFe₂, 50), 134 (HSC≡CPh, 24). 102 (HC≡CPh, 14), 89 (FeSH, 11), 57 (⁺Bu, 29), 56 (Fe, 18).

Synthesis of other $(\mu - \sigma, \pi - C \cong CR^{2})(\mu - RS)Fe_{2}(CO)_{6}$ complexes

The same procedure as that described above was used in the synthesis of the following complexes:

 $(\mu \cdot \sigma, \pi \cdot C \equiv C'Bu)(\mu \cdot {}^{t}BuS)Fe_{2}(CO)_{6}$ (2b) (a mixture of two inseparable isomers), as a dark red, air-stable solid, m.p. 56.0-60.0 °C after recrystallization from pentane.

Anal. Found: C, 42.52; H, 4.13. $C_{16}H_{18}Fe_2O_6S$ calc: C, 42.70; H, 4.03%. *IR*: Terminal carbonyl region (pentane): 2075s, 2038vs, 2000vs. 1980s. 1945w ($C \equiv C$?) cm⁻¹. ^{*1*}*H NMR* (CDCl₃; 250MHz): δ 1.17 (s, 9H, C(CH₃)₃ minor isomer), 1.27 (s, 9H, C(CH₃)₃ major isomer). 1.28 (s, 9H, C(CH₃)₃ major isomer), 1.34 (s, 9H. C(CH₃)₃ minor isomer). Ratio major/minor = 7.9/1.0. ^{*13*}*C NMR* (CDCl₃; 67.9 MHz): δ 31.60 (q, *J* 126.4 Hz, C \equiv CC(CH₃)₃ major isomer). 31.92 (q, *J* 127.0 Hz, C \equiv CC(CH₃)₃ minor isomer). 33.30 (q, *J* 127.2 Hz, SC(CH₃)₃ major isomer). 34.59 (q, J 127.0 Hz, SC(CH₃)₃ minor isomer), 36.70 (s, C=C(CH₃)₃), 48.16 s, SC(CH₃)₃), 102.34 (s, acetylide C), 109.60 (s, acetylide C), 208.48 (s, Fe-CO major isomer), 209.35 (s, Fe-CO minor isomer), 209.94 (s, Fe-CO minor isomer). Mass spectrum (EI); m/z (relative intensity): 450 (M^+ , 13), 422 ($M^+ - \text{CO}$, 9), 394 ($M^+ - 2\text{CO}$, 25), 366 ($M^+ - 3\text{CO}$, 16), 338 ($M^+ - 4\text{CO}$, 42), 310 ($M^+ - 5\text{CO}$, 41), 282 ($M^+ - 6\text{CO}$, 100), 226 HSFe₂C=C⁺Bu, 95), 184 (HSFe₂C=CMe, 10), 170 (HSFe₂C=CH, 69), 169 (HSFe₂C=C, 12), 168 (SFe₂C=C, 9), 145 (HSFe₂, 10), 144 (SFe₂, 34), 57(⁺Bu, 30), 56 (Fe, 10).

 $(\mu \cdot \sigma, \pi \cdot C \equiv CSiMe_3)(\mu \cdot BuS)Fe_2(CO)_6$ (2c) (a mixture of two inseparable isomers), as an air-stable, red solid, m.p. 58.0-59.0 °C after recrystallization from pentane.

Anal. Found: C, 38.73; H, 3.96. $C_{15}H_{18}Fe_2O_6SSi$ calc: C, 38.65; H, 3.89%. *IR* (CHCl₃): 1910vs (C=C). Terminal carbonyl region (pentane): 2080m, 2040s, 2017sh, 2010sh, 2002s, 1995sh, 1978vw cm⁻¹. ¹*H NMR* (CDCl₃; 90 MHz): δ 0.24 (s, 9H, Si(CH₃)₃ minor isomer), 0.28 (s, 9H, Si(CH₃)₃ major isomer), 1.17 (s, 9H, SC(CH₃)₃ minor isomer), 1.30 (s, 9H, SC(CH₃)₃ major isomer). Ratio major/minor = 2.3/1.0. ¹³C *NMR* (CDCl₃; 67.9 MHz): δ 0.11 (q, *J* 120.1 Hz, Si(CH₃)₃ major isomer), 0.40 (q, *J* 120.0 Hz, Si(CH₃)₃ minor isomer), 33.32 (q, *J* 128.1 Hz, SC(CH₃)₃ major isomer), 34.81 (q, *J* 122.5 Hz, SC(CH₃)₃ minor isomer), 48.55 (s, SC(CH₃)₃), 90.95 (s, acetylide C minor isomer), 143.24 (s, acetylide C major isomer), 208.16 (s, Fe-CO minor isomer), 209.48 (s, Fe-CO major isomer). *Mass spectrum (EI); m/z* (relatively intensity): 466 (*M*⁺, 7), 438 (*M*⁺ – CO, 8), 410 (*M*⁺ – 2CO, 18), 382 (*M*⁺ – 3CO, 23), 354 (*M*⁺ – 4CO, 24), 326 (*M*⁺ – 5CO, 30), 298 (*M*⁺ – 6CO, 85), 242 (HSFe₂C=CSiMe₃, 100), 226 (¹BuSFe₂C=CH, 20), 145 (HSFe₂, 3), 144 (SFe₂, 7), 112 (Fe₂, 4), 97 (C=CSiMe₃, 6), 73 (SiMe₃, 41), 57 (¹Bu, 49), 56 (Fc, 15).

 $(\mu - \sigma, \pi - C \equiv CPh)(\mu - EtS)Fe_2(CO)_6$ (2d) (a mixture of two inseparable isomers), as a slightly air-sensitive red oil.

Anal. Found: C, 43.55; H, 2.45. C₁₆H₁₀Fe₂O₆S calc: C, 43.48; H, 2.28%. IR: Terminal carbonyl region (pentane): 2080m, 2043vs, 2005s, 2002sh cm⁻¹. ¹H NMR (CD₂Cl₂; 250 MHz): § 1.11 (t, J 7.55 Hz, 3H, SCH₂CH₃ minor isomer), 1.29 (t, J 7.55 Hz, 3H, SCH₂CH₃ major isomer), 2.16 (q, J 7.37 Hz, 2H, SCH₂CH₃ minor isomer), 2.39 (q, J 7.37 Hz, 2H, SCH₂CH₃ major isomer), 7.28-7.58 (m, 10H, C₆H₅ both isomers). Ratio major/minor = 2.6/1.0. ¹³C NMR (CDCl₃; 67.9 MHz): δ 16.46 (q, J 127.6 Hz, SCH₂CH₃ minor isomer), 17.42 (q, J 128.6 Hz, SCH₂CH₃ major isomer), 23.46 (t, J 140.4 Hz, SCH₂CH₃ minor isomer), 34.18 (t, J 140.9 Hz, SCH₂CH₃ major isomer), 93.09 (s, acetylide C major isomer), 93.87 (s, acetylide C minor isomer), 113.21 (s, acetylide C major isomer), 119.00 (s, acetylide C minor isomer), 125.25 (s, *ipso*-C₆H₅), 128.57 (d, J 161.4 Hz, C₆H₅), 131.89 (d, J 161.6 Hz, C₆H₅), 132.24 (d, J 162.5 Hz, C₆H₅), 208.10 (s, Fe-CO minor isomer), 208.88 (s, Fe-CO major isomer). Mass spectrum (EI); m/z (relative intensity): 442 (M^+ , 13), 414 $(M^+ - CO, 12)$, 386 $(M^+ - 2CO, 33)$, 358 $(M^+ - 3CO, 15)$, 330 $(M^+ - 4CO, 15)$ 32), 302 (M^+ – 5CO, 33), 274 (M^+ – 6CO, 63), 246 (HSFe₂C=CPh, 100), 245 (SFe₂C=CPh, 34), 189 (SFeC=CPh, 25), 178 (HSFeCPh, 60), 169 (HSFe₂C=C, 15), 162 (EtSC=CPh, 18), 157 (FeC=CPh, 6), 145 (HSFe₂, 8), 144 (SFe₂, 48), 134 (HSC=CPh, 27), 102 (HC=CPh, 13), 89 (HSFe, 17), 56 (Fe, 7).

 $(\mu \cdot \sigma, \pi \cdot C \equiv C^{t}Bu)(\mu \cdot EtS)Fe_{2}(CO)_{6}$ (2e) (a mixture of two inseparable isomers), as a slightly air-sensitive red oil.

432

Anal. Found: C, 39.64; H, 3.43. C₁₄H₁₄Fe₂O₆S calc: C, 39.84; H, 3.34%. IR: Terminal carbonyl region (pentane): 2077vs, 2044vs, 2004vs, 1994vs, 1958sh, 1932sh(C≡C?) cm⁻¹. ¹H NMR (CDCl₃; 250 MHz): δ 1.05 (t, J 7.53 Hz, 3H, SCH_2CH_3 minor isomer), 1.22 (t. J 7.40 Hz, 3H, SCH_2CH_3 major isomer), 1.28 (s. 9H, C≡CC(CH₃)₃ major isomer), 1.33 (s, 9H, C≡CC(CH₃)₃ minor isomer), 1.96 (q, J 7.42 Hz, 2H, SCH₂CH₃ minor isomer). 2.24 (q. J 7.36 Hz, SCH₂CH₃ major isomer). Ratio major/minor = 2.8/1.0. ¹³C NMR (CDCl₃; 67.9 MHz): δ 16.39 (q, J 127.0 Hz, SCH₂CH₃ major isomer), 17.36 (q, J 128.2 Hz, SCH₂CH₃ minor isomer), 22.64 (t, J 142.8 Hz, SCH₂CH₃ minor isomer), 31.70 (q, J 126.4 Hz, $C \equiv CC(CH_3)_3$, 33.40 (s, $C \equiv CC(CH_3)_3$), 34.30 (t. J 139.6 Hz, SCH_3CH_3 major isomer), 101.50 (s, acetylide C major isomer), 105.48 (s, acetylide C minor isomer). 107.72 (s, acetylide C major isomer), 208.53 (s, Fe-CO minor isomer), 209.37 (s, Fe-CO major isomer). Mass spectrum (EI); m/z (relative intensity): 422 (M^+ , 3), 310 (M^+ – CO, 5), 366 (M^- – 2CO, 12), 338 (M^+ – 3CO, 8), 394 (M^- – 4CO, 15), 282 $(M^+ - 5CO, 19)$, 254 $(M^+ - 6CO, 36)$, 226 $(HSFe_3C \equiv C^+Bu, 41)$, 198 $(EtSFe_2C=CH, 5), 184 (HSFe_2C=CMe, 5), 183 (CH_3SFe_2C=C^{\dagger}Bu, 8), 170$ (HSFe₂C=CH, 38), 145 (HSFe₂, 12), 144 (SFe₂, 29), 57 (¹Bu, 30).

 $(\mu - \sigma, \pi - C \equiv C'Bu)(\mu - PhS)Fe_2(CO)_6$. After the reaction mixture had been stirred for 18 h at room temperature, the solvent was removed in vacuo, and the resulting red tar was dissolved in pentane and filtered through a thin pad of silicic acid. Removal of the solvent left a red oil which was purified by medium pressure chromatography. Pentane eluted three bands. The first brown-red band gave 0.14 g (0.29 mmol, 19%) of $(\mu - \sigma, \pi - C \equiv C'Bu)(\mu - PhS)Fe_2(CO)_6$ (2f) (ax isomer only), as an air-stable, red solid, m.p. 99.0–101.0 °C after recrystallization from pentane. The second cherry red band yielded 0.33 g (0.70 mmol, 47%) of $(\mu - \sigma, \pi - C \equiv C'Bu)(\mu -$ PhS)Fe₂(CO)₆ (2f) (eq isomer only), as a slightly air-sensitive red oil. The third orange band gave 0.16 g (0.33 mmol, 22% based on S) of $(\mu - PhS)_2 Fe_2(CO)_6$ identified by its ¹H NMR and mass spectra [20]. Except where specified, all data are reported for the eq/ax isomer mixture.

Anal. Found (major isomer - eq): C, 46.22; H, 3.19. Found (minor isomer - ax): C, 45.96; H, 3.11. C₁₈H₁₄Fe₂O₆S calc: C, 45.99; H, 3.00%. IR: Terminal carbonyl region (pentane): 2082s, 2042vs, 2003s, 1997sh, 1990sh cm⁻¹.⁻¹H NMR (CD₂Cl₂: 250 MHz): δ 0.86 (s, 9H, C(CH₃)₃ minor isomer), 1.34 (s, 9H, C(CH₃)₃ major isomer), 7.20 (s, 10H, C₆H₅ both isomers). ¹³C NMR (CDCl₃; 67.9 MHz): 8 30.80 (q, J 128.0 Hz, $C(CH_3)_3$ minor isomer), 31.71 (q, J 127.8 Hz, $C(CH_3)_3$ major isomer), 100.85 (s, acetylide C major isomer), 104.75 (s, acetylide C minor isomer). 108.26 (s, acetylide C major isomer), 111.01 (s, acetylide C minor isomer). 127.57 (d, J 163.4 Hz. C_6H_5 , 127.91 (d. J 160.8 Hz, C_6H_5), 128.48 (d. J 161.8 Hz, C_6H_5). 131.4 (d, J 161.9 Hz, C₆H₅), 133.87 (d, J 165.7 Hz, C₆H₅), 140.92 (s, *ipso*-C₆H₅). 208.37 (s, Fe-CO minor isomer), 209.06 (s, Fe-CO major isomer). Mass spectrum (EI); m/z (relative intensity): 470 (M^+ , 5), 442 (M^+ - CO, 2), 414 (M^- - 2CO. 23). 386 (M^+ – 3CO, 7), 358 (M^+ – 4CO, 4), 330 (M^+ – 5CO, 16), 302 (M^+ – 6CO, 100). 246 (PhSFe₂C=CH, 23), 221 (PhSFe₂, 6), 190 (PhSC=C^tBu, 5), 186 (PhSPh, 8), 169 (SFe₂C≡CH, 5), 158 (PhC≡C'Bu, 26), 144 (SFe₂, 10), 143 (PhC≡CCMe₂, 84). 128 (PhC=CCMe, 39), 110 (PhSH, 10), 77 (Ph, 13), 57 (¹Bu, 6),

Reaction of $(\mu - \sigma, \pi - C \equiv CPh)(\mu - BuS)Fe_2(CO)_6$ with Et_2NH

A 100 ml round-bottomed flask equipped with a stir-bar and a rubber septum

was charged with 0.87 g (1.85 mmol) of $(\mu$ - σ , π -C=CPh)(μ -¹BuS)Fe₂(CO)₆ (2a) and degassed by three evacuation/nitrogen-backfill cycles. The flask was then charged with 30 ml of THF and 0.21 ml (2.00 mmol) of diethylamine by syringe at room temperature. After the reaction mixture had been stirred for 20 h at room temperature, the solvent was removed in vacuo and the resulting deep red oil was purified by filtration chromatography. Pentane eluted a pale orange band which was not collected. Pentane/CH₂Cl₂ (3/1 v/v) eluted a pale yellow band which was not collected and purple band which gave 0.71 g (1.32 mmol, 71%) of (μ -HC-C(Ph)=NEt₂)(μ -^tBuS)Fe₂(CO)₆ (13) (a mixture of two inseparable isomers), as an air-stable, deep red solid, m.p. 117.0–119.0 °C after recrystallization from pentane/CH₂Cl₂.

Anal. Found: C, 48.79; H, 4.71. C₂₂H₂₅Fe₂O₆NS calc: C, 48.64; H, 4.64%. IR (CHCl₃): 2980m, 2965m, 2940m, 2930m, 2900w, 2880w, 1505vs (C=N), 1495s (C=N), 1472s, 1468s, 1445s, 1388s, 1370s, 1355s, 1340s, 1325s, 1265s, 1165s, 1098w, 1075m, 1030vw, 995w, 980w, 865w, 620s, 600s cm⁻¹. Terminal carbonyl region (pentane): 2050s, 2010vs, 1970s, 1960s, 1950m cm⁻¹. ¹H NMR (CD₂Cl₂; 250 MHz): δ 0.99 (s, 9H, SC(CH₃)₃ minor isomer), 1.05 (t, J 7.06 Hz, 6H, CH₂CH₃ both isomers), 1.30 (t, J 7.11 Hz, 6H, CH₂CH₃ both isomers), 1.39 (s, 9H, SC(CH₃)₃ major isomer), 1.42 (s, 1H, Fe₂CH - endo -major isomer), 3.01 (q, J 7.12 Hz, 4H, CH₂CH₃ both isomers), 3.54 (q, J 7.14 Hz, 4H, CH₂CH₃ both isomers), 3.92 (s, 1H, Fe₂CH - endo - minor isomer), 7.23-7.43 (m, 10H, C₆H₅ both isomers). Ratio major/minor = 1.4/1.0. ¹³C NMR (CDCl₃; 67.9 MHz): δ 11.71 (q, J 132.0 Hz, CH_2CH_3 both isomers), 13.66 (q, J 131.8 Hz, CH_2CH_3 both isomers), 32.57 (q, J 127.4 Hz, $SC(CH_3)_3$ minor isomer), 33.47 (q, J 126.8 Hz, $SC(CH_3)_3$ major isomer), 45.37 (t, J 138.4 Hz, CH₂CH₃ both isomers), 48.18 (t, J 134.7 Hz, CH₂CH₃ major isomer), 48.53 (t, J 140.0 Hz, CH₂CH₃ minor isomer), 63.78 (d, J 133.8 Hz, Fe₂CH minor isomer), 74.95 (d, J 134.4 Hz, Fe₂CH major isomer), 124.85-131.31 (m, C₆H₅), 136.31 (s, *ipso*-C₆H₅, minor isomer), 137.37 (s, *ipso*-C₆H₅, major isomer), 198.12 (s, $Et_2N=CPh$, major isomer), 200.96 (s, $Et_2N=CPh$, minor isomer), 214.28 and 214.71 (both s, Fe-CO). Mass spectrum (EI); m/z (relative intensity): 543 (M^+ , 7), 487 (M^+ – 2CO, 7), 459 (M^+ – 3CO, 16), 431 (M^+ – 4CO, 9), 403 $(M^+ - 5CO, 20)$, 375 $(M^+ - 6CO, 100)$, 347 $(M^+ - 6CO - C_2H_4, 6)$, 319 $(HSFe_2CHC(Ph)=NEt_2, 63), 291 (HSFe_2CHC(Ph)=NHEt, 34), 263$ (HSFe₂CHC(Ph)=NH₂, 7), 247 (HSFe₂CHCPh, 19), 221 (Fe₂SPh, 21), 185 (SFe₂CHC=NH₂, 20), 174 (Et₂N=C(Ph)CH, 27), 145 (HSFe₂, 16), 144 (SFe₂, 37), 105 (PhC=NH₂, 16), 104 (PhC=NH, 21), 103 (PhC=N, 19), 77 (Ph, 13), 57 (¹Bu, 37), 56 (Fe, 17).

Reaction of $(\mu - \sigma, \pi - C \equiv CPh)(\mu - BuS)Fe_2(CO)_6$ with $PhNH_2$

In an experiment similar to the reaction of **2a** with diethylamine, a THF solution containing 0.94 g (2.00 mmol) of $(\mu - \sigma, \pi - C \equiv CPh)(\mu - {}^{t}BuS)Fe_2(CO)_6$ (**2a**) and 0.18 ml (2.00 mmol) of aniline was stirred for 20 h at room temperature. Removal of the solvent in vacuo left a red oil which was purified by filtration chromatography. Pentane eluted a pale yellow band which was not collected. Pentane/CH₂Cl₂ (9/1 v/v) eluted a red band which gave 0.97 g (1.72 mmol, 86%) of $(\mu - CH_2C(Ph) = NPh)(\mu - {}^{t}BuS)Fe_2(CO)_6$ (**14**) as an air-stable, red solid, m.p. 118.0–121.0 °C (dec) after recrystallization from pentane/CH₂Cl₂.

Anal. Found: C, 51.22; H, 3.78. C₂₄H₂₁Fe₂O₆NS calc: C, 51.18; H, 3.76%. IR

(CCl₄): 3090w, 3070w, 3035w, 3015w, 2970m, 2945m, 2930m, 2900m, 2870m, 1610m (Ph or C=N), 1490s, 1475m, 1460m, 1445m, 1390w, 1370m, 1330vw, 1265s, 1210vw, 1160s, 1077w, 1057w, 1030m, 1000vw, 910w, 885vw, 865vw, 760vs, 615vs, 605vs, 575vs cm⁻¹. Terminal carbonyl region (pentane): 2065s, 2025vs, 1988vs, 1967m cm⁻¹. ^{*I*}*H NMR* (CD₂Cl₂; 300 MHz): δ 1.56 (s, 9H, SC(CH₃)₃), 1.89 and 2.02 (AB quartet, *J* 18.31 Hz, 2H, FeCH₂), 6.68–7.14 (m, 10H, C₆H₅). ^{*I*}*C NMR* (CDCl₃; 67.9 MHz): δ 26.37 (t, *J* 131.5 Hz, FeCH₂), 34.39 (q. *J* 126.8 Hz, SC(CH₃)₃), 48.18 (s, SC(CH₃)₃), 121.09–129.77 (m, C₆H₅), 140.51 (s, *ipso* C₆H₅), 154.99 (s, *ipso* C₆H₅), 198.00 (s, C=N), 209.93, 210.99, 211.78, and 218.06 (all s. Fe-CO).

Mass spectrum (EI); m/z (relative intensity): 563 (M^+ , 0.3), 535 ($M^+ - CO$, 0.1), 507 ($M^+ - 2CO$, 13), 479 ($M^+ - 3CO$, 5), 451 ($M^+ - 4CO$, 2), 423 ($M^+ - 5CO$, 17), 395 ($M^+ - 6CO$, 44), 339 (HSFe₂CH₂C(Ph)=NPh, 75), 235 (SFe₂NPh, 12), 221 (PhSFe₂, 14), 195 (MeC(Ph)=NPh, 53), 180 PhC=NPh, 100). 144 (Fe₂S, 26), 77 (Ph, 83), 57 (^tBu, 22), 56 (Fe, 14).

Reaction of $(\mu - \sigma, \pi - C \equiv CPh)(\mu - BuS)Fe_2(CO)_6$ with $BuNH_2$

In an experiment similar to the reaction of **2a** with diethylamine, a THF solution containing 0.97 g (2.07 mmol) of $(\mu - \sigma, \pi - C \equiv CPh)(\mu^{-t}BuS)Fe_2(CO)_6$ (**2a**) and 0.32 ml (3.00 mmol) of t-butylamine was stirred for 1 h at $-78^{\circ}C$ and then 18 h at room temperature. Removal of the solvent in vacuo left a brown oil which was purified by filtration chromatography. Pentane/CH₂Cl₂ (9/1 v/v) eluted an orange band which gave 0.23 g (0.50 mmol, 48% based on S) of $(\mu^{-t}BuS)_2Fe_2(CO)_6$ [21], identified by its ¹H NMR spectrum. Pentane/CH₂Cl₂ (9/1 v/v) then eluted a second orange band which gave 0.44 g (0.77 mmol, 37%) of $(\mu^{-t}C(Ph)NH^{t}Bu)C=O)(\mu^{-t}BuS)Fe_2(CO)_6$ (**15**) (a mixture of two inseparable isomers), as an air-stable, red solid mp 138°C (dec.) after recrystallization from pentane/CH₂Cl₂.

Anal. Found: C, 48.03; H, 4.56. C₂₃H₂₅Fe₂O₇NS cale: C, 48.36; H, 4.41%. IR (CCl₄): 3240vw-br (NH), 3065vw, 2975m, 2940m, 2925m, 2900w, 2870w, 1610m (C=C), 1585sh (acyl C=O), 1573 vs (acyl C=O), 1512m (Ph), 1475s, 1460s, 1445sh, 1400m, 1370s. 1308vs, 1265m, 1240m, 1200vs, 1160m, 1080s, 1037w, 1003w, 980w, 920w, 850m, 705m, 652m, 625sh, 595s, 565sh cm⁻¹. Terminal carbonyl region (pentane): 2070m, 2030vs, 2000s, 1987s, 1965m cm⁻¹. ¹H NMR (acetone- d_6 ; 300 MHz): 1.037 (s. 9H, NC(CH₃)₃ minor isomer), 1.044 (s, 9H, NC(CH₃)₃ major isomer), 1.47 (s, 9H, SC(CH₃)₃ major isomer), 1.55 (s, 9H, SC(CH₃)₃ minor isomer), 4.93 (s, 1H, HC=CPh minor isomer), 5.14 (s, 1H, HC=CPh major isomer), 6.96-7.48 (m, 10H, C₆H₅ both isomers), 9.49 (broad s, 1H, NH minor isomer), 9.55 (s, 1H, NH major isomer). Ratio major/minor = 1.5/1.0. ¹³C NMR (CDCl₃: 67.9 MHz): δ 31.36 (q, J 126.8 Hz, NC(CH₃)₃ both isomers), 34.32 (q, J 127.8 Hz, $SC(CH_3)_3$ both isomers), 47.45 (s, $SC(CH_3)_3$ minor isomer), 48.67 (s, $SC(CH_3)_3$ major isomer), 54.41 (s, NC(CH₃)₃ both isomers), 113.94 (d, J 168.2 Hz, HC=CPh minor isomer), 114.55 (d, J 167.6 Hz, HC=CPh major isomer), 127.77 (d, J 162.8 Hz, C₆H₅), 128.19 (d, J 164.4 Hz, C₆H₅), 129.21 (d, J 158.9 Hz, C₆H₅), 135.69 (s, $ipso-C_6H_5$), 156.45 (s, HC=CPh major isomer), 157.64 (s, HC=CPh minor isomer), 207.32, 210.83, 211.68, 213.05, and 214.24 (all s, Fe-CO both isomers). 253.41 (s, acyl C=O minor isomer), 257.19 (s, acyl C=O major isomer).

Mass spectrum (EI): m/z (relative intensity): 571 (M^+ , 4), 543 (M^+ - CO, 4),

515 (M^+ – 2CO, 7), 487 (M^+ – 3CO, 15), 459 (M^+ – 4CO, 8), 431 (M^+ – 5CO, 17), 403 (M^+ – 6CO, 47), 375 (M^+ – 7CO, 22), 347 (HSFe₂HC(=C(Ph)NH¹Bu)C=O, 100), 319 (HSFe₂HC=C(Ph)NH¹Bu, 28), 291 (HSFe₂HC(=C(Ph)NH₂)C=O, 23), 263 (HSFe₂HC=C(Ph)NH₂, 55), 221 (PhSFe₂, 27), 202 (HC(=C(Ph)NH¹Bu)C=O, 33), 185 (HSFe₂C=CNH₂, 19), 145 (HSFe₂, 13), 144 (SFe₂, 41), 104 (PhCNH, 44), 57 (¹Bu, 65), 56 (Fe, 16).

Reaction of $(\mu - \sigma, \mu - C \equiv CPh)(\mu - {}^{t}BuS)Fe_{2}(CO)_{6}$ with PPh₃

In an experiment similar to the reaction of **2a** with diethylamine, a THF solution containing 4.42 g (9.41 mmol) of $(\mu$ - σ , π -C=CPh)(μ -¹BuS)Fe₂(CO)₆ (**2a**) and 2.53 g (9.64 mmol) of triphenylphosphine was stirred for 1 h at room temperature. Removal of the solvent in vacuo left a purple, foamy solid which was purified by filtration chromatography. Pentane eluted a pale, brownish-yellow band which was not collected. Pentane/CH₂Cl₂ (4/1 v/v) eluted dark purple and purple-red bands which were collected together. Repeated filtration chromatography achieved a satisfactory separation between the two. However, the second product converted readily to the first during chromatographic workup. Subsequently, the residue from the second band was extracted with pentane to yield a purplish solution (first product) and an insoluble orange solid (second product). Ultimately, the first band yielded 3.90 g (5.54 mmol, 57%) of (μ - σ , π -C=CPh)(μ -^tBuS)Fe₂(CO)₅(PPh₃) (17) (a mixture of two inseparable isomers), as an air-stable, purple solid, m.p. 145.0 °C (dec) after recrystallization from pentane/CH₂Cl₂.

Anal. Found: C, 59.32; H, 4.21. C₃₅H₂₉Fe₂O₅PS calc: C, 59.68; H, 4.15%.

IR (CHCl₃): 3070m, 2977w, 2955w, 2938w, 2908w, 2878vw, 1599m (Ph), 1576w (Ph), 1485vs, 1461m, 1435vs, 1395vw, 1368s, 1311vw, 1185vw, 1160s, 1092vs, 1072vw, 1028vw, 1001w, 630s, 619vs, 608vs, 580vs, 515vs cm⁻¹. Terminal carbonyl region (pentane): 2050vs, 2001vs, 1992s, 1972m, 1952w cm⁻¹.

¹*H* NMR (CD₂Cl₂; 250 MHz): δ 1.04 (s, 9H, SC(CH₃)₃ minor isomer), 1.08 (s, 9H, SC(CH₃)₃ major isomer), 7.11–7.78 (m, 40H, C₆H₅ both isomers). Ratio major/minor = 8.5/1.0. ¹³C NMR (CD₂Cl₂; 67.9 MHz): δ 33.43 (q, J 128.0 Hz, SC(CH₃)₃ major isomer), 34.14 (q, J 125.2 Hz, SC(CH₃)₃ minor isomer), 47.87 (s, SC(CH₃)₃), 97.13 (s, acetylide C), 125.68–136.80 (m, C₆H₅), 212.52, 215.59, 215.76, 216.40, and 216.57 (all s, Fe-CO). ³¹P NMR (CD₂Cl₂; 36.2 MHz): δ 62.72 (s, PPh₃ major isomer), 65.41 (s, PPh₃ minor isomer). Mass spectrum (FD); m/z (relative intensity): 704 (M⁺).

Ultimately, the second band yielded 1.86 g (2.54 mmol, 26%) of $(\mu$ -Ph₃P=CCPh)(μ -^tBuS)Fe₂(CO)₆ (16) as an air-stable, orange solid, m.p. 108.0–115.0 °C (dec) after recrystallization from pentane/CH₂Cl₂.

IR (CHCl₃): 3070w, 2973w, 2957w, 2937w, 2910w, 2867vw, 1599w (Ph), 1580vw (Ph), 1500vs, 1473vs, 1440vs, 1392vw, 1367w, 1320vw, 1267vw, 1185vw, 1160s, 1104s, 1073vw, 1030vw, 1002w, 895w, 640vs, 631vs, 611vs, 599vs, 510vs cm⁻¹. Terminal carbonyl region (pentane): 2085vw, 2050m, 2009vs, 1975m, 1962m, 1945w cm⁻¹. ^{*I*}*H NMR* (CD₂Cl₂; 90 MHz): δ 1.37 (s, 9H, SC(CH₃)₃), 6.72–7.80 (m, 20H, C₆H₅). ^{*I*3}*C NMR* (CD₂Cl₂; 67.9 MHz): δ 33.89 (q, *J* 126.7 Hz, SC(CH₃)₃), 45.80 (s, SC(CH₃)₃), 118.72–136.10 (m, C₆H₅). 145.31 (d, *J*(PC) 20.4 Hz, Ph₃PC=CPh), 214.30 and 214.71 (both s, Fe-CO), 292.41 (s, Ph₃PC=CPh). ³¹P NMR (CD₂Cl₂; 36.2 MHz): δ 0.54 (s, PPh₃). *Mass spectrum (FD); m/z*: 732 (*M*⁺).

Decarbonylation of $(\mu - Ph_3P = CCPh)(\mu - BuS)Fe_2(CO)_6$

A 100 ml round-bottomed flask equipped with a stir-bar and rubber septum was charged with 0.17 g (0.24 mmol) of $(\mu$ -Ph₃PC=CPh) $(\mu$ -^tBuS)Fe₂(CO)₆ (16) and degassed by three evacuation/nitrogen-backfill cycles. Subsequently, 30 ml of THF was added by syringe. After the reaction mixture had been stirred for 90 h at room temperature, the solvent was removed in vacuo, and the resulting purple tar was purified by filtration chromatography. Pentane eluted a pale orange band which was not collected. Pentane/CH₂Cl₂ (5/1 v/v) eluted a dark purple band which gave 0.15 g (0.21 mmol, 88%) of $(\mu$ - σ , π -C=CPh) $(\mu$ -^tBuS)Fe₂(CO)₅PPh₃ (17) identified by its ¹H and ³¹P NMR spectra.

Acknowledgements

The authors are grateful to the National Science Foundation for generous support of this work and to the M.I.T. Mass Spectrometry Facility (supported by N.I.H. Division of Research Resources, Grant No. RR 00317; K. Biemann, principal investigator) for mass spectra.

References

- 1 D. Seyferth, G.B. Womack and J.C. Dewan, Organometallics, 4 (1985) 398.
- 2 (a) R.B. King, J. Am. Chem. Soc., 84 (1962) 2460; (b) G.B. Womack. Ph. D. Dissertation The Massachusetts Institute of Technology: Cambridge, MA, 1984, pp. 25, 26, 225.
- 3 (a) H.A. Patel, R.G. Fischer, A.J. Carty, D.V. Naik and G.J. Palenik, J. Organomet, Chem., 60 (1973) C49; (b) W.F. Smith, J. Yule, N.J. Taylor, N.H. Paik and A.J. Carty, Inorg. Chem., 16 (1977) 1593; (c) A.J. Carty, H.N. Paik and G.J. Palenik, Inorg. Chem., 16 (1977) 300; (d) A.J. Carty, ACS Adv. Chem. Ser., 196 (1981) 163; (e) A.J. Carty, Pure and Appl. Chem., 54 (1982) 113.
- 4 (a) P.W. Jolly and R. Pettit, J. Organomet. Chem., 12 (1968) 491; (b) M.L.H. Green and T. Mole, J. Organomet. Chem., 12 (1968) 404; (c) A. Davison and J.P. Selegue, J. Am. Chem. Soc., 100 (1978) 7763; (d) R.A. Bell, M.H. Chisholm, D.A. Couch, and L.A. Rankel, Inorg. Chem., 16 (1977) 677.
- 5 P.O. Nubel and T.L. Brown, Organometallics, 3 (1984) 29.
- 6 (a) D. De Montauzon and R. Mathieu, J. Organomet. Chem., 252 (1983) C83; (b) M.K. Alami, F. Dahan and R. Mathieu, Organometallics, 4 (1985) 2122.
- 7 (a) K. Yasufuku and H. Yamazaki, Bull. Chem. Soc. Jpn., 45 (1972) 2664; (b) K. Yasufuku and H. Yamazaki, Bull. Chem. Soc. Jpn., 48 (1975) 1616.
- 8 (a) M. Catti, G. Gervasio and S.A. Mason, J. Chem. Soc., Dalton Trans., (1977) 2260; (b) E. Sappa, O. Gambino, L. Milone and G. Cetini, J. Organomet. Chem., 39 (1972) 169; (c) A.J. Deeming, S Hasso and M. Underhill, J. Chem. Soc., Dalton Trans., (1975) 1614; (d) S. Ermer, R. Karpelus, S. Miura, E. Rosenberg, A. Tiripicchio and A.M.M. Lanfredi, J. Organomet. Chem., 187 (1980) 81.
- 9 (a) A.J. Carty, S.A. MacLauglin and N.J. Taylor, J. Organomet. Chem., 204 (1981) C27; (b) A.J. Carty, N.J. Taylor and W.F. Smith, J. Chem. Soc., Chem. Commun., (1979) 750.
- 10 (a) R.W.M. ten Hoedt, J.G. Noltes, G. van Koten and A.L. Spek, J. Chem. Soc., Dalton Trans., (1978) 1800; (b) O.M. Abu Salah, M.I. Bruce, M.R. Churchill and S.A. Bezman, J. Chem. Soc., Chem. Commun., (1972) 858; (c) O.M. Abu Salah, M.I. Bruce, M.R. Churchill and B.G. De Boer, J. Chem. Soc., Chem. Commun., (1974) 688.
- 11 J. Hriljac and D.F. Shriver, Organometallics, 4 (1985) 2225.
- 12 S.Y. Delavarenne and H.G. Viche, in H.G. Viehe (Ed.), Chemistry of Acetylenes, Marcel Dekker, New York, 1969, pp. 691–693.
- 13 R.M. Silverstein, G.C. Bassler, T.C. Morrill, (Eds.), Spectrometric Identification of Organic Compounds, John Wiley and Sons, Inc., New York, 1981, p. 10.
- 14 P.D. Magnus, T. Sarkar and S. Djuric, in G. Wilkinson, F.G.A. Stone, E.W. Abel, (Eds.), Comprehensive Organometallic Chemistry, Pergamon Press, New York, 1982, 7, pp. 517-519.

- 15 (a) S. Aime, L. Milone, E. Sappa, A. Tiripicchio and M.T. Camellini, J. Chem. Soc., Dalton Trans., (1979) 1155; (b) J.P. Hickey, J.C. Huffman and L.J. Todd, Inorg. Chim. Acta, 28 (1978) 77; (c) P.O. Nubel and T.L. Brown, J. Am. Chem. Soc., 106 (1984) 3474; (d) P.O. Nubel and T.L. Brown, Organometallics, 3 (1984) 29; (e) M.D. Fryzuk, T. Jones and F.W.B. Einstein, Organometallics, 3 (1984) 185; (f) J.R. Shapley, S.I. Richter, M. Tachikawa and J.B. Keister, J. Organomet. Chem., 94 (1975) C43; (g) A.D. Clauss, M. Tachikawa, J.R. Shapley and C.G. Pierpoint, Inorg. Chem., 20 (1981) 1528; (h) Reference 2b, p. 288; (i) A.F. Dyke, S.A.R. Knox, P.J. Naish and G.E. Taylor, J. Chem. Soc., Chem. Commun., (1980) 409.
- (a) A.J. Carty, G.N. Mott, N.J. Taylor and J.E. Yule, J. Am. Chem. Soc., 100 (1978) 3051. (b) A.J. Carty, N.J. Taylor, H.N. Paik, W. Smith and J.G. Yule, J. Chem. Soc., Chem. Commun., (1976) 41; (c) A.J. Carty, G.N. Mott and N.J. Taylor, J. Organomet. Chem., 182 (1979) C69; (d) G.N. Mott, R. Granby, S.A. MacLaughlin, N.J. Taylor and A.J. Carty, Organometallics, 2 (1983) 289; (e) Y.S. Wong, H.N. Paik, P.C. Chieh and A.J. Carty, J. Chem. Soc., Chem. Commun., (1975) 309.
- 17 (a) J.B. Hoke, Chapters 3 and 4 of Ph.D. Dissertation, M.I.T., 1987; (b) C.M. Archer, Ph. D. Dissertation. The Massachusetts Institute of Technology, Cambridge, MA, 1986, p. 218.
- 18 L. Brandsma, H.D. Verkruijsse, (Eds.), Synthesis of Acetylenes, Allenes, and Cumulenes, Elsevier Pub. Co., New York, 1981, p. 98.
- 19 W. McFarlane and G. Wilkinson, Inorg. Synth., 8 (1966) 181.
- 20 S.F.A. Kettle and L.E. Orgel, J. Chem. Soc., (1960) 3890.
- 21 J.A. deBeer and R.J. Haines, J. Organomet. Chem., 24 (1970) 757.